Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6)/pyridine-d(5).

Identifieur interne : 003116 ( Main/Exploration ); précédent : 003115; suivant : 003117

Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6)/pyridine-d(5).

Auteurs : Hoon Kim [États-Unis] ; John Ralph

Source :

RBID : pubmed:20090974

Descripteurs français

English descriptors

Abstract

NMR fingerprinting of the components of finely divided plant cell walls swelled in DMSO has been recently described. Cell wall gels, produced directly in the NMR tube with perdeutero-dimethylsulfoxide, allowed the acquisition of well resolved/dispersed 2D (13)C-(1)H correlated solution-state NMR spectra of the entire array of wall polymers, without the need for component fractionation. That is, without actual solubilization, and without apparent structural modification beyond that inflicted by the ball milling and ultrasonication steps, satisfactorily interpretable spectra can be acquired that reveal compositional and structural details regarding the polysaccharide and lignin components in the wall. Here, the profiling method has been improved by using a mixture of perdeuterated DMSO and pyridine (4 : 1, v/v). Adding pyridine provided not only easier sample handling because of the better mobility compared to the DMSO-d(6)-only system but also considerably elevated intensities and improved resolution of the NMR spectra due to the enhanced swelling of the cell walls. This modification therefore provides a more rapid method for comparative structural evaluation of plant cell walls than is currently available. We examined loblolly pine (Pinus taeda, a gymnosperm), aspen (Populus tremuloides, an angiosperm), kenaf (Hibiscus cannabinus, an herbaceous plant), and corn (Zea mays L., a grass, i.e., from the Poaceae family). In principle, lignin composition (notably, the syringyl : guaiacyl : p-hydroxyphenyl ratio) can be quantified without the need for lignin isolation. Correlations for p-coumarate units in the corn sample are readily seen, and a variety of the ferulate correlations are also well resolved; ferulates are important components responsible for cell wall cross-linking in grasses. Polysaccharide anomeric correlations were tentatively assigned for each plant sample based on standard samples and various literature data. With the new potential for chemometric analysis using the 2D NMR fingerprint, this gel-state method may provide the basis for an attractive approach to providing a secondary screen for selecting biomass lines and for optimizing biomass processing and conversion efficiencies.

DOI: 10.1039/b916070a
PubMed: 20090974
PubMed Central: PMC4070321


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6)/pyridine-d(5).</title>
<author>
<name sortKey="Kim, Hoon" sort="Kim, Hoon" uniqKey="Kim H" first="Hoon" last="Kim">Hoon Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, and DOE Great Lakes BioEnergy Research Center, University of Wisconsin, Madison, Wisconsin 53706, USA. hoonkim@wisc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, and DOE Great Lakes BioEnergy Research Center, University of Wisconsin, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20090974</idno>
<idno type="pmid">20090974</idno>
<idno type="doi">10.1039/b916070a</idno>
<idno type="pmc">PMC4070321</idno>
<idno type="wicri:Area/Main/Corpus">003325</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003325</idno>
<idno type="wicri:Area/Main/Curation">003325</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003325</idno>
<idno type="wicri:Area/Main/Exploration">003325</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6)/pyridine-d(5).</title>
<author>
<name sortKey="Kim, Hoon" sort="Kim, Hoon" uniqKey="Kim H" first="Hoon" last="Kim">Hoon Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, and DOE Great Lakes BioEnergy Research Center, University of Wisconsin, Madison, Wisconsin 53706, USA. hoonkim@wisc.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry, and DOE Great Lakes BioEnergy Research Center, University of Wisconsin, Madison, Wisconsin 53706</wicri:regionArea>
<wicri:noRegion>Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
</author>
</analytic>
<series>
<title level="j">Organic & biomolecular chemistry</title>
<idno type="eISSN">1477-0539</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylation (MeSH)</term>
<term>Analytic Sample Preparation Methods (methods)</term>
<term>Cell Wall (chemistry)</term>
<term>Dimethyl Sulfoxide (chemistry)</term>
<term>Gels (MeSH)</term>
<term>Lignin (chemistry)</term>
<term>Magnetic Resonance Spectroscopy (methods)</term>
<term>Plants (chemistry)</term>
<term>Polysaccharides (chemistry)</term>
<term>Pyridines (chemistry)</term>
<term>Solutions (MeSH)</term>
<term>Solvents (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétylation (MeSH)</term>
<term>Diméthylsulfoxyde (composition chimique)</term>
<term>Gels (MeSH)</term>
<term>Lignine (composition chimique)</term>
<term>Méthodes de préparation d'échantillons analytiques (méthodes)</term>
<term>Paroi cellulaire (composition chimique)</term>
<term>Plantes (composition chimique)</term>
<term>Polyosides (composition chimique)</term>
<term>Pyridines (composition chimique)</term>
<term>Solutions (MeSH)</term>
<term>Solvants (composition chimique)</term>
<term>Spectroscopie par résonance magnétique (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Dimethyl Sulfoxide</term>
<term>Lignin</term>
<term>Polysaccharides</term>
<term>Pyridines</term>
<term>Solvents</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cell Wall</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Diméthylsulfoxyde</term>
<term>Lignine</term>
<term>Paroi cellulaire</term>
<term>Plantes</term>
<term>Polyosides</term>
<term>Pyridines</term>
<term>Solvants</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Analytic Sample Preparation Methods</term>
<term>Magnetic Resonance Spectroscopy</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Méthodes de préparation d'échantillons analytiques</term>
<term>Spectroscopie par résonance magnétique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acetylation</term>
<term>Gels</term>
<term>Solutions</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acétylation</term>
<term>Gels</term>
<term>Solutions</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">NMR fingerprinting of the components of finely divided plant cell walls swelled in DMSO has been recently described. Cell wall gels, produced directly in the NMR tube with perdeutero-dimethylsulfoxide, allowed the acquisition of well resolved/dispersed 2D (13)C-(1)H correlated solution-state NMR spectra of the entire array of wall polymers, without the need for component fractionation. That is, without actual solubilization, and without apparent structural modification beyond that inflicted by the ball milling and ultrasonication steps, satisfactorily interpretable spectra can be acquired that reveal compositional and structural details regarding the polysaccharide and lignin components in the wall. Here, the profiling method has been improved by using a mixture of perdeuterated DMSO and pyridine (4 : 1, v/v). Adding pyridine provided not only easier sample handling because of the better mobility compared to the DMSO-d(6)-only system but also considerably elevated intensities and improved resolution of the NMR spectra due to the enhanced swelling of the cell walls. This modification therefore provides a more rapid method for comparative structural evaluation of plant cell walls than is currently available. We examined loblolly pine (Pinus taeda, a gymnosperm), aspen (Populus tremuloides, an angiosperm), kenaf (Hibiscus cannabinus, an herbaceous plant), and corn (Zea mays L., a grass, i.e., from the Poaceae family). In principle, lignin composition (notably, the syringyl : guaiacyl : p-hydroxyphenyl ratio) can be quantified without the need for lignin isolation. Correlations for p-coumarate units in the corn sample are readily seen, and a variety of the ferulate correlations are also well resolved; ferulates are important components responsible for cell wall cross-linking in grasses. Polysaccharide anomeric correlations were tentatively assigned for each plant sample based on standard samples and various literature data. With the new potential for chemometric analysis using the 2D NMR fingerprint, this gel-state method may provide the basis for an attractive approach to providing a secondary screen for selecting biomass lines and for optimizing biomass processing and conversion efficiencies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20090974</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>03</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1477-0539</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Organic & biomolecular chemistry</Title>
<ISOAbbreviation>Org Biomol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6)/pyridine-d(5).</ArticleTitle>
<Pagination>
<MedlinePgn>576-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/b916070a</ELocationID>
<Abstract>
<AbstractText>NMR fingerprinting of the components of finely divided plant cell walls swelled in DMSO has been recently described. Cell wall gels, produced directly in the NMR tube with perdeutero-dimethylsulfoxide, allowed the acquisition of well resolved/dispersed 2D (13)C-(1)H correlated solution-state NMR spectra of the entire array of wall polymers, without the need for component fractionation. That is, without actual solubilization, and without apparent structural modification beyond that inflicted by the ball milling and ultrasonication steps, satisfactorily interpretable spectra can be acquired that reveal compositional and structural details regarding the polysaccharide and lignin components in the wall. Here, the profiling method has been improved by using a mixture of perdeuterated DMSO and pyridine (4 : 1, v/v). Adding pyridine provided not only easier sample handling because of the better mobility compared to the DMSO-d(6)-only system but also considerably elevated intensities and improved resolution of the NMR spectra due to the enhanced swelling of the cell walls. This modification therefore provides a more rapid method for comparative structural evaluation of plant cell walls than is currently available. We examined loblolly pine (Pinus taeda, a gymnosperm), aspen (Populus tremuloides, an angiosperm), kenaf (Hibiscus cannabinus, an herbaceous plant), and corn (Zea mays L., a grass, i.e., from the Poaceae family). In principle, lignin composition (notably, the syringyl : guaiacyl : p-hydroxyphenyl ratio) can be quantified without the need for lignin isolation. Correlations for p-coumarate units in the corn sample are readily seen, and a variety of the ferulate correlations are also well resolved; ferulates are important components responsible for cell wall cross-linking in grasses. Polysaccharide anomeric correlations were tentatively assigned for each plant sample based on standard samples and various literature data. With the new potential for chemometric analysis using the 2D NMR fingerprint, this gel-state method may provide the basis for an attractive approach to providing a secondary screen for selecting biomass lines and for optimizing biomass processing and conversion efficiencies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Hoon</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, and DOE Great Lakes BioEnergy Research Center, University of Wisconsin, Madison, Wisconsin 53706, USA. hoonkim@wisc.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ralph</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P41 RR002301</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 RR008438-01</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 GM066326</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41RR02301</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41GM66326</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 RR002781-01</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 RR002781</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 RR008438</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Org Biomol Chem</MedlineTA>
<NlmUniqueID>101154995</NlmUniqueID>
<ISSNLinking>1477-0520</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005782">Gels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011725">Pyridines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012996">Solutions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012997">Solvents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8024-50-8</RegistryNumber>
<NameOfSubstance UI="C007916">hemicellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>NH9L3PP67S</RegistryNumber>
<NameOfSubstance UI="C023666">pyridine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YOW8V9698H</RegistryNumber>
<NameOfSubstance UI="D004121">Dimethyl Sulfoxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053000" MajorTopicYN="N">Analytic Sample Preparation Methods</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004121" MajorTopicYN="N">Dimethyl Sulfoxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005782" MajorTopicYN="N">Gels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011134" MajorTopicYN="N">Polysaccharides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011725" MajorTopicYN="N">Pyridines</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012996" MajorTopicYN="N">Solutions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012997" MajorTopicYN="N">Solvents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20090974</ArticleId>
<ArticleId IdType="doi">10.1039/b916070a</ArticleId>
<ArticleId IdType="pmc">PMC4070321</ArticleId>
<ArticleId IdType="mid">NIHMS558349</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Phytochemistry. 2001 Jul;57(6):987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 1992 Jul 2;231:317-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1394323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 2007 Aug;187(2):258-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17533143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Mar;210(4):659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10787061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2002 Jan 7;(1):90-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12120325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2004 Apr 28;339(6):1201-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15063212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2008 Sep;9(9):2510-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18712922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Chem. 2006 Oct;44(10):976-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16835899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2009 Feb 11;131(5):1979-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19159236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Apr;210(5):732-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2004 Apr 28;339(6):1129-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15063201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2000 Dec 1;329(4):807-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11125823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jul 11;277(5323):235-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9211851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2004 Oct 7;2(19):2714-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15455138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2006 Jan;7(1):54-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16398498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 1998 Feb;307(1-2):177-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9658572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2005 Feb;15(2):139-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15371346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 May 8;124(18):4974-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11982358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2007 Jul 11;55(14):5461-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17552541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2003 Mar 14;338(6):525-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11856-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17609384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 2003 Jan;66(1):7-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12542335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2007 Aug 22;55(17):7124-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17658824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Sep;2(5):933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1999 Apr;2(2):145-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Sci. 1995 Sep;73(9):2774-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8582870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2004;18(11):1181-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15164346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2005 Dec 14;53(25):9639-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2007 Dec;8(12):3740-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17979237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2004 Jan 22;339(2):301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14698888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2002 Jan 2;50(1):129-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11754556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Macromol Biosci. 2004 Nov 20;4(11):1008-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15529395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1992 Oct 5;40(7):753-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18601178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2002 Feb 18;337(4):373-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11841818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2002 Apr 23;210(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12023070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2000 Nov 17;329(3):635-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11128591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2008 Oct 21;6(20):3681-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18843398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1998 Feb 16;46(2):547-552</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10554275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2002 Jun 5;337(11):1033-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12039544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2007 May 2;55(9):3477-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 Oct 22;56(20):9525-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18823124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2005 Mar 28;(12):1557-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15770258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Magn Reson Chem. 2008 Jun;46(6):508-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18383438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 May;229(6):1253-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19288269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2005 May 4;53(9):3693-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15853421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Oct;58(3):525-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11557087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2005 May 23;340(7):1431-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15854618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Aug;35(4):535-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12904215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2004 Oct 21;2(20):2888-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15480449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 1996 Oct 4;292:173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8870244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2005 May 20;90(4):473-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 1998 Dec 21;314(1-2):101-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10230039</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Kim, Hoon" sort="Kim, Hoon" uniqKey="Kim H" first="Hoon" last="Kim">Hoon Kim</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003116 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003116 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20090974
   |texte=   Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6)/pyridine-d(5).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20090974" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020